

Welcome to jdTextEdit’s documentation!

W.I.P.

	General
	Commandline Arguments

	Environment Variables

	userChrome.css

	Plugin Development
	Getting Started

	PluginAPI

	Add Language

	Editor Signals

	TabWidget Signals

	Mainwindow Signals

	Application Signals

	Distribution
	Default Data

	Global Commands and Macros

	distribution.json

	Getting Involved
	Translate jdTextEdit

Indices and tables

	Index

	Module Index

	Search Page

General

	Commandline Arguments

	Environment Variables

	userChrome.css

Commandline Arguments

jdTextEdit has currently the following Commandline Arguments:

	-p, --portable

	Run in portable mode

	--data-dir DATADIR

	Sets the data directory

	--disable-plugins

	Start without plugins

	--no-session-restore

	Start without restoring the session

	--disable-updater

	Start with disabled Updater

	--distribution-file PATH

	Sets custom distribution.json

	--language LANGCODE

	Starts jdTextEdit in the given language and ignore the system language or the user settings

Environment Variables

jdTextEdit has currently the following Environment Variables:

	JDTEXTEDIT_DATA_PATH
	Set the data path of jdTextEdit.

	JDTEXTEDIT_DISABLE_UPDATER
	Set this variable to disable the Updater of jdTextEdit

userChrome.css

jdTextEdit supports custom styling with CSS. Just place a file called userChrome.css in the data directory. For information about creating a style sheet take a look at the Qt Documentation.

Plugin Development

	Getting Started

	PluginAPI

	Add Language

	Editor Signals

	TabWidget Signals

	Mainwindow Signals

	Application Signals

Getting Started

First create a new directory in the plugins directory with a __init__.py inside. The __init__.py must have the following functions:

def main(env):
 #Write your code here

def getID():
 return "myPlugin"

def getName():
 return "My Plugin"

def getVersion():
 return "1.0"

def getAuthor():
 return "John Doe"

PluginAPI

The plugin API contains the following functions:

addLanguage(language: LanguageBase)

Adds a language to jdTextEdit

getEditorSignals() -> EditorSignals:

Returns the Editor Signals.

getMainWindowSignals() -> MainWindowSignals:

Returns the Mainwindow Signals.

getApplicationSignals() -> ApplicationSignals

Returns the Application Signals.

addSettingsTab(tab: SettingsTabBase)

Adds a Settings Tab.

registerSetting(key: str,value: str)

Register a new Setting.

addTranslationDirectory(path: str)

Adds a directory which contains translations.

addBigFilesCheckBox(setting: str, text:str)

Adds a Checkbox to the Big files Settings Tab.

addTheme(theme: ThemeBase)

Adds a Theme.

addSidebarWidget(widget: SidebarWidgetBase)

Adds a Sidebar Widget.

addAction(action: QAction)

Adds a Action to the list in the settings menu.

Add Language

To add a new language you need to create a class that inherit from LanguageBase.

from jdTextEdit.api.LanguageBase import LanguageBase
from PyQt5.Qsci import QsciLexerPython, QsciAPIs

class MyLanguage(LanguageBase):
 def getLexer(self):
 return QsciLexerPython()

 def getName(self):
 return "My Language"

 def getID(self):
 return "myplugin.mylanguage"

 def getExtensions(self):
 return ["py"]

 def getStarttext(self):
 return ["#!/usr/bin/python"]

 def getAPI(self,lexer):
 api = QsciAPIs(lexer)
 api.add("Hello")
 api.prepare()

Here’s a description of all functions

getLexer()

Returns a QsciScintilla Lexer. You can use a existing one or write one by yourself.

getName()

Retruns the Name of your Language.

getID()

Returns the ID of your Language. The ID is used to identify your Lanmguage, so make sure it is used by nobody else.

The following functions are optional.

getExtensions()

Returns a list with all extension for you filetype. e.g. if the list contains “mylang” and the user open a file with the name “text.mylang” your language will be set.

getStarttext()

Some language starts every or the moist time with a special text. e.g. all XML files start with <?xml. This function returns a list which all known starttexts for your language.

getAPI(lexer)

Retruns the API for the language.

Editor Signals

	editorInit
	Emited when a Editor Widget is created

	Arguments
	
	CodeEdit: The Widget which is created

	openFile
	Emited when a File is opened

	Arguments
	
	CodeEdit: The Widget whre the file is opened

	str: The path of the file

	linesChanged
	Emited when the a line is changed. Same as the QScintilla Signal.

	Arguments
	
	CodeEdit: The Widget where the Line is changed

	textChanged
	Emited when the Text is changed. Same as the QScintilla Signal.

	Arguments
	
	CodeEdit: The Widget where the Text is changed

	indicatorClicked
	Emited when a indicator is clicked is changed. Same as the QScintilla Signal.

	Arguments
	
	CodeEdit: The Widget where the indicatir is clicked

	int: Line

	iint Index

	Qt::KeyboardModifiers: state

	indicatorReleased
	Emited when a indicator is clicked is released. Same as the QScintilla Signal.

	Arguments
	
	CodeEdit: The Widget where the indicatir is realeased

	int: Line

	iint Index

	Qt::KeyboardModifiers: state

	contextMenu
	Emited when a the user try to open a context menu. Accept the event that given as arg to prevent the original menu to open, so you can create your own menu.

	Arguments
	
	CodeEdit: The Widget where the menu is opened

	QEvent: The context menu event

	settingsChanged
	Emited when a the settingsof a widget are changed.

	Arguments
	
	CodeEdit: The Widget where the settings are changed

	Settings: The new settings

	languageChanged
	Emited when a the Language is changed.

	Arguments
	
	CodeEdit: The Widget where the Language is changed

	LanguageBase: The Language. None if the Language is removed.

	saveSession
	Emiited when the session is saved.

	Arguments
	
	CodeEdit: The Widget where the session is saved

	dict: A dict in which you can put your custom properties

	restoreSession
	Emiited when the session is restored.

	Arguments
	
	CodeEdit: The Widget where the session is restored

	dict: Contains all the session properties

TabWidget Signals

	tabCreated
	Emited when a new tab is created

	Arguments
	
	EditTabWidget: The Widget in which the new tab is opened

	EditContainer: The Widget of the new tab

	tabClosed
	Emited when a tab is closed

	Arguments
	
	EditTabWidget:; The Widget in which the tab is closed

Mainwindow Signals

	windowInit
	Emited when a Mainwindow is created.

	Arguments
	
	MainWindow: The Mainwindow which is created

Application Signals

	settingsChanged
	Emited when the settings are changed.

	Arguments
	
	Settings: The new settings

Distribution

	Default Data

	Global Commands and Macros

	distribution.json

Default Data

You can create a directory with the name default_data inside the instalation directory. If a user which has no data directory starts jdTextEdit the content of default_data will be copied into the users data directory.

Global Commands and Macros

You can add Global Commands and Macros. Just copy the commands.json and the macros.json from the data directory to the instalation directory and it will be aviable for all users.

distribution.json

distribution.json is a JSON file which is placed in the Program Directory. It has some options for people who are building packages. Currently the following options are available:

You don’t need to set all options. Just set the options you need and remove the others from the file.

You can use enviroment variables in all paths.

{
 "enableUpdater": false,
 "_description_": "Enable or disable the updater",

 "dataDirectory": "~/.edit",
 "_description_": "Sets the Data Directory.",

 "aboutMessage": "Hello from John Doe",
 "_description_": "This message is shown in the About Window.",

 "templateDirectories": [],
 "_description_": "Add template directories",

 "enableTranslationWarning": false,
 "_description_": "Show a warning when no language is build"
}

Getting Involved

	Translate jdTextEdit

Translate jdTextEdit

You can translate jdTextEdit using Weblate [https://translate.codeberg.org/projects/jdTextEdit/].

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to jdTextEdit’s documentation!

 		
 General

 		
 Commandline Arguments

 		
 Environment Variables

 		
 userChrome.css

 		
 Plugin Development

 		
 Getting Started

 		
 PluginAPI

 		
 Add Language

 		
 Editor Signals

 		
 TabWidget Signals

 		
 Mainwindow Signals

 		
 Application Signals

 		
 Distribution

 		
 Default Data

 		
 Global Commands and Macros

 		
 distribution.json

 		
 Getting Involved

 		
 Translate jdTextEdit

_static/minus.png

_static/plus.png

_static/file.png

